1 5 M ay 2 01 3 How long does it take to compute the eigenvalues of a random symmetric matrix ? ∗
نویسنده
چکیده
We present the results of an empirical study of the performance of the QR algorithm (with and without shifts) and the Toda algorithm on random symmetric matrices. The random matrices are chosen from six ensembles, four of which lie in the Wigner class. For all three algorithms, we observe a form of universality for the deflation time statistics for random matrices within the Wigner class. For these ensembles, the empirical distribution of a normalized deflation time is found to collapse onto a curve that depends only on the algorithm, but not on the matrix size or deflation tolerance provided the matrix size is large enough (see Figure 4, Figure 7 and Figure 10). For the QR algorithm with the Wilkinson shift, the observed universality is even stronger and includes certain non-Wigner ensembles. Our experiments also provide a quantitative statistical picture of the accelerated convergence with shifts. MSC classification: 65F15, 65Y20, 60B20, 82B44
منابع مشابه
How long does it take to compute the eigenvalues of a random symmetric matrix?∗
We present the results of an empirical study of the performance of the QR algorithm (with and without shifts) and the Toda algorithm on random symmetric matrices. The random matrices are chosen from six ensembles, four of which lie in the Wigner class. For all three algorithms, we observe a form of universality for the deflation time statistics for random matrices within the Wigner class. For t...
متن کاملOrthogonal similarity transformation of a symmetric matrix into a diagonal-plus-semiseparable one with free choice of the diagonal
It is well-known how any symmetric matrix can be transformed into a similar tridiagonal one [1, 2]. This orthogonal similarity transformation forms the basic step for various algorithms. For example if one wants to compute the eigenvalues of a symmetric matrix, one can rst transform it into a similar tridiagonal one and then compute the eigenvalues of this tridiagonal matrix. Very recently an a...
متن کامل2 4 M ay 1 99 9 The Eigenvalue Spacing of a Random Unipotent Matrix in its Representation on
The eigenvalue spacing of a uniformly chosen random finite unipotent matrix in its permutation action on lines is studied. We obtain bounds for the mean number of eigenvalues lying in a fixed arc of the unit circle and offer an approach toward other asymptotics. For the case of all unipotent matrices, the proof gives a probabilistic interpretation to identities of Macdonald from symmetric funct...
متن کاملar X iv : m at h / 03 07 33 0 v 2 [ m at h . PR ] 2 9 M ay 2 00 4 SPECTRAL MEASURE OF LARGE RANDOM HANKEL , MARKOV AND TOEPLITZ MATRICES
We study the limiting spectral measure of large symmetric random matrices of linear algebraic structure. For Hankel and Toeplitz matrices generated by i.i.d. random variables {Xk} of unit variance, and for symmetric Markov matrices generated by i.i.d. random variables {Xi,j}j>i of zero mean and unit variance, scaling the eigenvalues by √ n we prove the almost sure, weak convergence of the spect...
متن کاملOn the eigenvalues of some matrices based on vertex degree
The aim of this paper is to compute some bounds of forgotten index and then we present spectral properties of this index. In continuing, we define a new version of energy namely ISI energy corresponded to the ISI index and then we determine some bounds for it.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013